Homebrew HF SWR/Power Meter

Bill Leonard

NAØTC - 285 TechConnect Radio Club http://www.naøtc.org/

Dynamic Demo: http://www.walter-fendt.de/ph14e/stwaverefl.htm

SWR Calculation

•Not a direct measurement

$$SWR = \frac{1 + \sqrt{\frac{P_R}{P_F}}}{1 - \sqrt{\frac{P_R}{P_F}}} = \frac{E_F + E_R}{E_F - E_R}$$
$$E_F = Forward Voltage$$
$$E_R = Reverse Voltage$$
$$P_F = Forward Power$$
$$P_R = Reverse Voltage$$

SWR accuracy is only as good as the power measurement accuracy (both Forward & Reflected)

•How should RF Power be measured?

1. RF voltmeter connected at the output of the transmitter

•How should RF Power be measured?

1. RF voltmeter connected at the output of the transmitter

No!

- 1. Voltage reading is dependent upon load impedance at the point of measurement
 - Power meters on Ameritron Power Amplifiers
- 2. To determine power, we need independent measurements of voltage and current

•How should RF Power be measured?

- 1. RF voltmeter connected at the output of the transmitter
- 2. Use a TRUE POWER meter that can measure both current and voltage of both the forward and reflected waves

RF Power Meter Components

SWR/Power Meter - Digital

Alpha 4520 Digital Power/SWR Meter

SWR/Power Meter - Digital

SWR/Power Meter - Digital

My Digital Power Meter

5/4/2012

Digital Power/SWR Meters

What is the main difference?

Digital Power/SWR Meters

Cost!

\$800

~\$0-50

Digital Power/SWR Meters

Accuracy varies from ~5% to ? •Power reading accuracy is <u>very</u> dependent on Sensor <u>calibration accuracy</u> (both Forward & Reflected)

Accuracy: 5-10% achievable

Accuracy Spec = <5%

5/4/2012

Ultimate Limit on Accuracy?

•<u>Sensor</u> Calibration!

Initial CAL accuracy

•Volts out vs Power In

- •SWR is a calculation, not a measurement
- Volts out vs Frequency
- •Traceable to NIST?
- •Drift with time

•Load impedance drift with heating (1-3 KW???)

•Having a digital readout:

Doesn't improve accuracy

Improves resolution

•May improve repeatability

•Having a digital processor does allow for better calibration of sensor characteristics

Telepost LP-100A Digital Vector Wattmeter

Accuracy:
Same specs as Alpha 4520
5% maximum
3% (typical)
NIST traceable factory calibration
What does this mean?
eHam rating: 5.0/5 (121 reviews)
\$435

Directional Coupler

Directional Coupler

•Only couples power flowing in one direction

•Only couples a small sample of the power flowing in the desired direction

 Coupling factor represents the primary property of a directional coupler
 To reduce 100 w to 100 mw => Coupling factor = -30 dB
 Directivity is the measure of how well a coupler isolates two oppositetravelling (forward and reverse) signals
 Creates region of uncertainty around all measurements

_{5/4/2012}•Bird 43: Directivity >30 dB

Dual Directional Coupler

Coupled Transmission Line Coupler

Bird 43

Tandem Match Coupler

Tandem Match Coupler

How do we get Voltage & Current?

Tandem Match Coupler

Tandem Match Coupler

Common Sensors

Tandem Match Coupler

•This coupler has some nice features:

- •Simplicity, excellent directivity
- •Scalable to other power levels, and
- •50- Ω load impedances on all ports
- •Covering 1.8-30 MHz requires careful transformer design
- •Input VSWR can degrade rapidly as frequency drops below 7 MHz

•Bruene Bridge

Requires comparatively little space

- •Most commonly used design by Ham equipment manufacturers
- •Primary challenges with this design:
 - 1. Parasitic lead inductance associated with C2
 - 2. High values for C2
 - 3. Excessive secondary wire length on T1, and
 - 4. Impedance control in the bifilar secondary winding
- •The lead inductance and C2 result in a series resonance that progressively deteriorates bridge balance as the frequency is raised

Tandem Match Coupler

SWR Sensor (from 2010 ARRL Antenna Handbook)

Fig 19—Schematic diagram of the high-power directional coupler. D1 and D2 are germanium diodes (1N34 or equiv). R1 and R2 are 47 or $51-\Omega$, $\frac{1}{2}$ -W resistors. C1 and C2 have 500-V ratings. The secondary windings of T1 and T2 each consist of 40 turns of #26 to #30 enameled wire on T-68-2 powdered-iron toroid cores. If the coupler is built into an existing antenna tuner, the primary of T1 can be part of the tuner coaxial output line. The remotely located meters (M1 and M2) are connected to the coupler box at J1 and J2 via P1 and P2.

Tandem Match Coupler

Fig 19—Schematic diagram of the high-power directional coupler. D1 and D2 are germanium diodes (1N34 or equiv). R1 and R2 are 47 or 51- Ω , $\frac{1}{2}$ -W resistors. C1 and C2 have 500-V ratings. The secondary windings of T1 and T2 each consist of 40 turns of #26 to #30 enameled wire on T-68-2 powdered-iron toroid cores. If the coupler is built into an existing antenna tuner, the primary of T1 can be part of the tuner coaxial output line. The remotely located meters (M1 and M2) are connected to the coupler box at J1 and J2 via P1 and P2.

Tandem Match Coupler

Caution: Germanium diodes don't like heat

Tandem Match Coupler Using Balun Core

DX Zone.com "Digital QRP SWR/ Power Meter" by KD1JV

Processor/Display

DX Zone.com "Digital QRP SWR/ Power Meter" by KD1JV

"Whitman's Sampler" tin

•http://kd1jv.qrpradio.com/

•http://www.dxzone.com/cgi-bin/dir/jump2.cgi?ID=18048

5/4/2012

Envelope Detector

Common Envelope Detector

Diodes:

•Type not critical

•Germanium best for QRP

•Matched is desirable, but not required

Diode Options

Silicon:

•1N3600 => V_D ~0.7 volt

Germanium:

•1N34, 1N60, 1N270 => V_D ~ 0.3 volt

5/4/2012

Diode Matching - Tandem Match Coupler

Watts

Isolated Meter Circuit

Meter Adjustment

A SIMPLE SWR METER FOR QRP (1 WATT) LEVELS

Performance – Power Measurement

Performance – SWR Measurement

25 ohm Load @ $P_F = 60$ watts

SWR Protection Circuit

