USUBITAL MA3 Miniature Absolute Magnetic Shaft Encoder Page 1 of 8

Description

The **MA3** is a miniature rotary absolute shaft encoder that reports the shaft position over 360 $^{\circ}$ with no stops or gaps. The **MA3** is available with an analog or a pulse width modulated (PWM) digital output.

Analog output provides an analog voltage that is proportional to the absolute shaft position. Analog output is only available in 10-bit resolution.

PWM output provides a pulse width duty cycle that is proportional to the absolute shaft position. PWM output is available in 10-bit and 12-bit resolutions. While the accuracy is the same for both encoders, the 12-bit version provides higher resolution.

Three shaft torque versions are available. The standard torque version has a sleeve bushing lubricated with a viscous motion control gel to provide torque and feel that is ideal for front panel human interface applications.

The no torque added option has a sleeve bushing and a low viscosity lubricant (that does not intentionally add torque) for low RPM applications where a small amount of torque is acceptable.

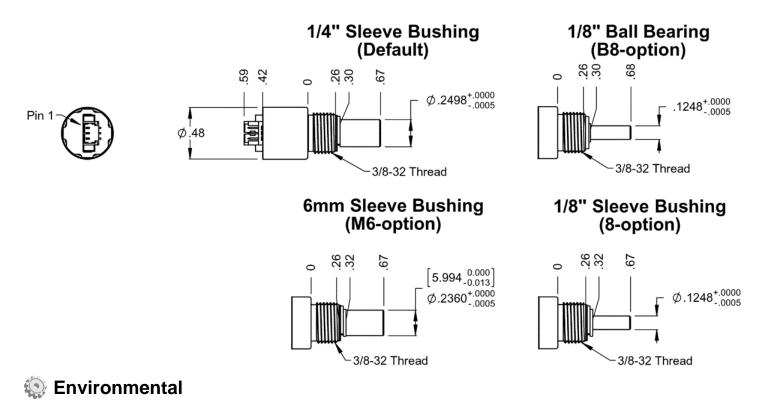
The ball bearing version uses miniature precision ball bearings that are suitable for high speed and ultra low torque applications. The shaft diameter for ball bearing version option is 1/8" rather than 1/4".

Connecting to the **MA3** is simple. The 3-pin high retention snap-in 1.25mm pitch polarized connector provides for +5V, output, and ground.

Mechanical Drawing

Features

- Patent pending
- Miniature size (0.48" diameter)
- Non-contacting magnetic single chip sensing technology
- ▶ -40C to 125C. operating temperature range
- + 10-bit Analog output 2.6 kHz sampling rate
- 10-bit PWM output 1024 positions per revolution, 1 kHz
- 12-bit PWM output 4096 positions per revolution, 250 Hz



1400 NE 136th Avenue Vancouver, Washington 98684, USA info@usdigital.com www.usdigital.com

US Miniature Absolute Magnetic Shaft Encoder Page 2 of 8

Parameter	Value
Operating Temperature	-40C to +125C
Storage Temperature	-55C to +125C
Humidity, Non-condensing	5% to 85%
Vibration (5Hz to 2kHz)	20 G.
Electrostatic Discharge, Human Body Model	± 2 kV

Mechanical

Specification	Sleeve Bushing	Ball Bearing
Moment of Inertia	4.1 x 10^-6 oz-in-s ²	4.1 x 10^-6 oz-in-s ²
Angular Accuracy	<0.5 deg. @ 25C	<0.5 deg. @ 25C
Angular Accuracy Over Temperature	<0.9 deg. @ -40C to 125C	<0.9 deg. @ -40C to 125C
Max. Shaft Speed (1)	100 rpm	15000 rpm
Max. Acceleration	10000 rad/sec ²	250000 rad/sec ²
Max. Shaft Torque	0.5 ± 0.2 in-oz (D - torque optic 0.3 in-oz (N - torque option)	n) 0.05 in-oz
Max. Shaft Loading	2 lb. dynamic 20 lb. static	1 lb.
USEE 1400 NE 136th Avenue DIGITAL Vancouver, Washingto		ligital.com Local: 360.260.2468 ligital.com Toll-free: 800.736.0194

Specification	Sleeve Bushing	Ball Bearing
Bearing Life (2)	> 1,000,000 revolutions	$L_{10} = (18.3/Fr)^3$? Where L_{10} = bearing life in millions of revs, and Fr = radial shaft loading in pounds
Weight	0.46 oz.	0.37 oz.
Max. Shaft Total Indicated Runout	0.0015 in.	0.0015 in.

(1) When a pulley, gear, or friction wheel drives the shaft, the Ball Bearing option is recommended instead of the Sleeve Bushing. The ch ip that decodes position uses sampled data. There will be fewer readings per revolution as the speed increases. The formula for n umber of readings per revolution is given by:

n = (60 / (rpm * 96 usec))

(2) only valid with negligible axial shaft loading

🐼 Mounting

Parameter	Value
Hole Diameter	0.375" +0.005 / -0.0
Panel Thickness	0.125" max.
Panel Nut Max. Torque	20 inlbs.

💮 Materials

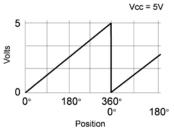
Parameter	Dimension
Shaft	Stainless
Bushing	Brass

Magnetic Field Crosstalk

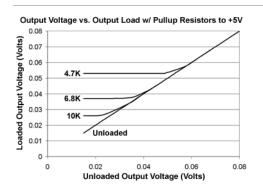
The **MA3** absolute encoder contains a small internal magnet, mounted on the end of the shaft that generates a weak magnetic field extending outside the housing of each encoder. If two **MA3** units are to be installed closer than 1 inch apart (measured between the center of both shafts), a magnetic shield, such as a small steel plate should be installed in between to prevent one encoder from causing small changes in reported position through magnetic field cross-talk.

Electrical


Parameter	Min.	Тур.	Max.	Units
Power Supply	4.5	5.0	5.5	Volts
Supply Current	-	16	20	mA


1400 NE 136th Avenue Vancouver, Washington 98684, USA info@usdigital.com www.usdigital.com

Analog Output Operation

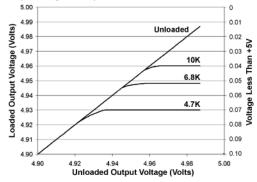

Analog output is only available in 10-bit resolution. The analog output voltage is ratiometric to the power supply voltage and will typically swing within 15 millivolts of the power supply rails with no output load. This non-linearity near the rails increases with increasing output loads. For this reason, the output load impedance should be $\geq 4.7 k \Omega$ and less than 100pF. The graphs below show the typical output levels for various output loads when powered by a 5V supply.

Parameter	Min.	Тур.	Max.	Units
Position Sampling Rate	2.35	2.61	2.87	kHz
Propagation Delay	-	-	384	?S
Analog Output Voltage Maximum (1)	-	4.987	-	Volts
Analog Output Voltage Minimum (1)	-	0.015	-	Volts
Output Short Circuit Sink Current (2)	-	32	50	mA
Output Short Circuit Source Current (2)	-	36	66	mA
Output Noise (2)	160	220	490	μ Vrms
Output Transition Noise (3)	-	0.03	-	Deg. RMS

(1) With no output load. See graphs below.

(2) Continuous short to +5V or ground will not damage the**MA3**.

(3) Transition noise is the jitter in the transition between two adjacent position steps.



1400 NE 136th Avenue Vancouver, Washington 98684, USA info@usdigital.com www.usdigital.com

Output Voltage vs. Output Load w/ Pulldown Resistors to GND

PWM Output Operation

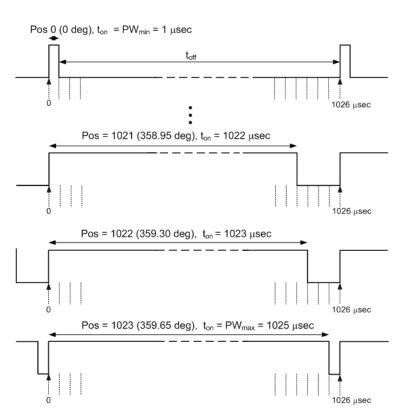
The magnetic sensor chip in the **MA3** has an on-chip RC oscillator which is factory trimmed to 5% accuracy at room temperature (10% over full temperature range). This tolerance influences the sampling rate and pulse period of the PWM output. If only the PWM pulse w idth ton and the nominal pulse period is used to measure the angle, the resulting value also has this timing tolerance. However, this to lerance can be cancelled by measuring both ton and toff and calculating the angle from the duty cycle. Angular accuracy including non-linearity is within 0.5 deg. at 25C, but may increase to 0.9 deg. at high temperatures.

Parameter	Min.	Тур.	Max.	Units
PWM Frequency (-40C to 125C)				
10-bit	0.877	0.975	1.072	kHz
12-bit	220	244	268	Hz
Minimum Pulse Width				
10-bit	0.95	1.00	1.05	?S
12-bit	0.95	1.00	1.05	?S
Maximum Pulse Width				
10-bit	974	1025	1076	?S
12-bit	3892	4097	4302	?S
Internal Sampling Rate				
10-bit	9.38	10.42	11.46	kHz
12-bit	2.35	2.61	2.87	kHz
Propagation				
10-bit	-	-	48	?S
12-bit	-	-	384	?S
Output Transition Noise, 12-bit version (1)		0.03		Deg. RMS
Output Transition Noise, 10-bit version (1)		0.12		Deg. RMS
Output High Voltage (V OH: @4mA Source) (2)	Vcc -0.5	-	-	V
Output Low Voltage (V OL: @4mA Sink) (2)	-	-	0.4	V

(1) Transition noise is the jitter in the transition between two adjacent position steps.

(2) Continuous short to +5V or ground will not damage theMA3.

1400 NE 136th Avenue Vancouver, Washington 98684, USA info@usdigital.com www.usdigital.com



10-bit PWM:

x = ((ton * 1026) / (t on + t off)) - 1

If $x \le 1022$, then Position = x

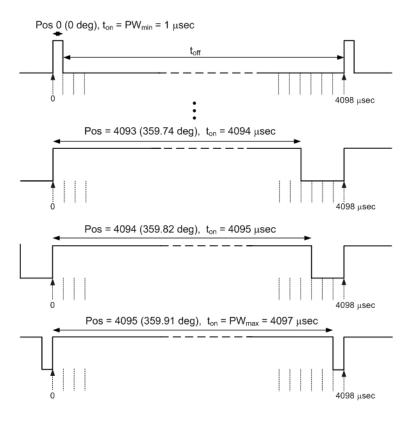
If x = 1024, then Position = 1023

12-bit PWM:

x = ((ton * 4098) / (t on + t off)) - 1

If $x \le 4094$, then Position = x

If x = 4096, then Position = 4095



1400 NE 136th Avenue Vancouver, Washington 98684, USA info@usdigital.com www.usdigital.com

US Miniature Absolute Magnetic Shaft Encoder Page 7 of 8

Pin-outs

Analog Output (MA3-A):

Pin	Name	Description
1	5	+5VDC power
2	A	Analog output
3	G	Ground

PWM Output (MA3-P10, MA3-P12):

Pin	Name	Description
1	5	+5VDC power
2	A	PWM output
3	G	Ground

1400 NE 136th Avenue Vancouver, Washington 98684, USA info@usdigital.com www.usdigital.com Local: 360.260.2468 Toll-free: 800.736.0194

Rev. 120523133801

US Miniature Absolute Magnetic Shaft Encoder Page 8 of 8

Ordering Information

MA3 ·		-	-	
	Interface	Shaft Diameter	Torque	Rules
	A10 =10-Bit	125 = 1/8"	D =Sleeve Bushing,	Torque must be something other than B when
	Analog	236 =6mm	Most Drag	Shaft Diameter is something other than 125
	P10 = <i>10-Bit</i> <i>PWM</i>	250 = 1/4"	N =Sleeve Bushing, Somewhat Lighter Drag	Notes
	P12 = <i>12-Bit</i> <i>PWM</i>	-	B =Ball Bearing, Free Spinning (Least Drag)	 Cables and connectors are not included and must be ordered separately. US Digital warrants its products against defects in materials and workmanship for two years.

Base Pricing

Quantity	Price
1	\$39.60
10	\$34.69
50	\$30.56
100	\$26.28

Add 17% per unit for Interface of 12-Bit PWM

Add \$1.00 per unit for Shaft Diameter of 6mm

Add \$5.80 per unit for Torque of Ball Bearing, Free Spinning (Least Drag)

1400 NE 136th Avenue Vancouver, Washington 98684, USA info@usdigital.com www.usdigital.com Local: 360.260.2468 Toll-free: 800.736.0194

See complete warranty for details.